博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
击败二分查找法——快速检索和插值检索
阅读量:7012 次
发布时间:2019-06-28

本文共 6888 字,大约阅读时间需要 22 分钟。

1.快速检索和最后回归到二分检索的快速检索

    如果由于某些原因,数组长度未知,快速检索可以识别初始的搜索域。这个算法从第一个元素开始,一直加倍(*2)搜索域的上界,直到这个上界已经大于待查关键字。上界的增长如图。

    之后,根据实现不同,或者采用标准的二分检索查找,或者开始另一轮的快速检索。前者可以保证O(log(n)) 的运行时间,后者则更接近O(n)的运行时间。如果我们要找的元素比较接近数组的开头,快速检索就非常有效。
    总结:查找的元素在开头位置,快速检索很有效。次轮搜索使用二分法运行时间为O(log(n)),使用快速检索,运行时间接近线性。

2插值检索和最后回归到顺序查找的插值检索

    在被测的算法中,插值检索可以说是“最聪明”的一个算法。它类似于人类使用电话簿的方法,它试图通过假设元素在数组中均匀分布,来猜测元素的位置

    首先它依赖搜索空间的开头和结尾线性插值中间位置,依赖中间所以的值与搜索值的大小,更新索索空间开头和结尾。算法一直重复这个步骤,直到找到元素。如果猜测是准确的,比较的次数大概是O(log(log(n)),运行时间大概是O(log(n));但如果猜测的不对,运行时间就会是O(n)了。
    插值检索的一个改进版本是,只要可推测我们猜测的元素位置是接近最终位置的(即在插值左右的某个步长范围内),就开始执行顺序查找。相比二分检索,插值检索的每次迭代计算代价(需要计算插值)都很高,因此在最后一步采用顺序查找,无需猜测元素位置的复杂计算,很容易就可以从很小的区域(大概10个元素)中找到最终的元素位置。
    围绕插值检索的一大疑问就是,O(log(log(n))的比较次数可能产生O(log(log(n))的运行时间。这并非个案,因为存储访问时间和计算下一次猜测的CPU时间相比,这两者之间要有所权衡。如果数据量很大,而且存储访问时间也很显著,比如在一个实际的硬盘上,插值检索轻松击败二分检索。然而,实验表明,如果访问时间很短,比如说RAM,插值检索可能不会产生任何好处。简而言之,插值检索依赖于存储访问时间,访问时间越短,插值检索的效果越好。

    总结:插值检索比二分法计算代价高,因此存储访问时间越短使用效果越好。

3.测试代码

快速检索:

package com.search;/*快速检索*/public class Gallop  implements Search{     private static long iteration;     	public int search(int[] arr, int val, int left, int right) {		if(left>right||arr==null||arr.length==0||arr[left] > val || arr[right - 1] < val){			System.out.println("Wrong input for myGallop Searching algo");			return -1;}				int jumpStep=1;		int currentRight=right;		while(left<=currentRight)		  {iteration++;			if(arr[left]==val)				return left;			else			   {currentRight=left+jumpStep;			    if(currentRight>right) currentRight=right;				if(arr[currentRight]<=val)				   {left=currentRight;jumpStep*=2;}				else					jumpStep=1;//开始下一轮快速检索,此处可以选择二分检索			}		  }		System.out.println("未曾找到");		return -1;	}		public long getAccessed() {		long old=iteration;		iteration=0;		return old;	}
插值检索

package com.search;/* 插值检索*/public class Interpolation implements Search {//var为targert    private static long iteration;    public int search(final int[] arr, final int val, int left, int right) {        if (arr == null || arr.length == 0 || arr[left] > val || arr[right - 1] < val) {            return -1;        }        int mid;        while (left<=right) {        	        iteration++;        	        mid = left + (right - left) * (val - arr[left]) / (arr[right] - arr[left]); //此处于二分查找不同,套用插值公式          	        if(arr[mid] > val)//如果val比插值小,把高位调整为插值下标的下一位                    	            right = mid - 1;                                   	        else if(arr[mid] < val)          	            left = mid + 1;          	        else          	            return mid;        }		return -1;    }    public long getAccessed() {//获得循环次数        final long old =iteration;        iteration = 0;        return old;    }}
回归顺序查找的插值检索

package com.search;/*回归顺序查找的插值检索*/public class InterpolationSequential implements Search {    public long iteration;    private final int distance;    public InterpolationSequential(final int distance) {        this.distance = distance;    }    public int search(final int[] arr, final int val, int left, int right) {    	        if (arr == null || arr.length == 0 || arr[left] > val || arr[right - 1] < val) {            return -1;        }        int mid;        while (left<=right) {	        iteration++;	        float slop=((float)right - left)/(arr[right] - arr[left]);	        mid = (int) (left +(val - arr[left])*slop);//用插值公式  	        if(arr[mid] > val)//如果val比插值小,把高位调整为插值下标的下一位            	            right = mid - 1;                           	        else if(arr[mid] < val)  	            left = mid + 1;  	        else  	            return mid;                   if (Math.abs(arr[mid]-val)*slop<=distance)//此处满足一定条件下回归线性查找                 return sequential(arr, val, mid,arr[mid]-val );        }		return -1;    }    private int sequential(final int[] arr, final int val, final int start, final int sign) {//顺序查找        final int step = sign < 0 ? 1: -1;        for (int i = start; i < arr.length && i >= 0; i += step) {           iteration++;           if (arr[i]== val)                 return i;        }        return -1;    }    public long getAccessed() {        final long old = iteration;        iteration = 0;        return old;    }}

测试主程序:

package com.search;import java.util.Arrays;import java.util.Random;	public class App {	    public static void main(final String[] args) {	    		    	int[] arr= getArray(10000);//产生随机数组	    	Search b=new  Binary();//二分检索法	    	Search s=new  Gallop();//快速检索算法	    	Search  i=new  Interpolation();//插值检索算法	        Search is=new InterpolationSequential(5);//回归线性查找的插值算法,设置步长为5	       	        long start=System.nanoTime();	    	System.out.println("******二分检索法查找位置到的位置为 "+b.search(arr, arr[726], 0, arr.length-1));	    	System.out.println("循环次数 "+b.getAccessed());	    	System.out.println("运行时间 "+(System.nanoTime()-start));	        	      start=System.nanoTime();	    	System.out.println("******快速检索法查找位置到的位置为 "+s.search(arr, arr[726], 0, arr.length-1));	    	System.out.println("循环次数 "+s.getAccessed());	    	System.out.println("运行时间 "+(System.nanoTime()-start));	    		    	start=System.nanoTime();	    	System.out.println("******插值法查找位置到的位置为 "+i.search(arr, arr[726], 0, arr.length-1));	    	System.out.println("循环次数 "+i.getAccessed());	    	System.out.println("运行时间 "+(System.nanoTime()-start));	    		    	start=System.nanoTime();	        System.out.println("******回归线性法的插值法查找位置到的位置为 "+is.search(arr, arr[726], 0, arr.length-1));	    	System.out.println("循环次数 "+is.getAccessed());	    	System.out.println("运行时间 "+(System.nanoTime()-start));	    }	    	    private static int[] getArray(final int n) {//随机数组产生	        final int[] arr = new int[n];	        final Random rnd = new Random();	        for (int i = 0; i < arr.length; i++) {	            arr[i] = rnd.nextInt(n * 5);//0-5*n之间的随机整数	        }	        Arrays.sort(arr);//排序	        return arr;	    }}
运行结果:******二分检索法查找位置到的位置为 726循环次数 11运行时间 375237******快速检索法查找位置到的位置为 726循环次数 37运行时间 54521******插值法查找位置到的位置为 726循环次数 3运行时间 50353******回归线性法的插值法查找位置到的位置为 726循环次数 9运行时间 81141

     见上,插值法效果最好。快速检索法的运行时间明显少于二分法。

4.二分检索法

     Arrays.binarySearch(arr, left, right, val);//Java二分检索法,var为查找对象元素

二分查找法:

package com.search;//2分法查找public class Binary implements Search {    public long iteration;//尝试次数    public int search(final int[] arr, final int val, int left, int right) {        if (arr == null || arr.length == 0 || arr[left] > val || arr[right - 1] < val)             return -1;        while (left <= right) {            final int midpoint = (left + right) / 2;            final int mid = arr[midpoint];            iteration++;            if (val < mid)                 right = midpoint - 1;            else if (mid == val)                 return midpoint;            else                 left = midpoint + 1;         }        return -1;    }    public long getAccessed() {        final long old = iteration;        iteration = 0;//重置为0        return old;    }}

本文参考:

       

转载于:https://www.cnblogs.com/engineerLF/p/5393083.html

你可能感兴趣的文章
Mysql主从复制及读写分离的实现
查看>>
哈希表的静态,动态,以及key/value形式
查看>>
基于memcached-session-manager的tomcat session共享集群
查看>>
关于Apache的一些配置
查看>>
Hadoop 1.2.1 (centos 6.4下) 伪分布模式下安装
查看>>
SpringMVC的重定向(redirect:)
查看>>
Nginx日志过滤使用ngx_log_if不记录特定日志
查看>>
TCP/IP会话与状态
查看>>
sed删除中文字符
查看>>
MongoDB基本命令用
查看>>
react技术分享(归纳总结)
查看>>
我的友情链接
查看>>
python学习心得-第一天-作业
查看>>
Centos6 iptables防火墙设置
查看>>
RHEL/CentOS/Ubuntu 进入单用户模式
查看>>
Linux - 命令行 预览(navigation) 详解
查看>>
清除Windows Server Backup 备份副本
查看>>
MySQL数据库性能优化之一(缓存参数优化)
查看>>
常见Sqlite管理工具
查看>>
Web工程加入日志组件:slf4j+logback
查看>>